首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3744篇
  免费   1070篇
  国内免费   3298篇
地球物理   674篇
地质学   6997篇
海洋学   92篇
天文学   11篇
综合类   88篇
自然地理   250篇
  2024年   21篇
  2023年   125篇
  2022年   251篇
  2021年   291篇
  2020年   290篇
  2019年   390篇
  2018年   383篇
  2017年   434篇
  2016年   456篇
  2015年   467篇
  2014年   519篇
  2013年   563篇
  2012年   539篇
  2011年   391篇
  2010年   366篇
  2009年   359篇
  2008年   329篇
  2007年   357篇
  2006年   326篇
  2005年   248篇
  2004年   234篇
  2003年   133篇
  2002年   77篇
  2001年   77篇
  2000年   75篇
  1999年   54篇
  1998年   34篇
  1997年   72篇
  1996年   38篇
  1995年   36篇
  1994年   36篇
  1993年   29篇
  1992年   25篇
  1991年   20篇
  1990年   15篇
  1989年   13篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
排序方式: 共有8112条查询结果,搜索用时 15 毫秒
61.
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials,and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca.240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.  相似文献   
62.
This study focuses on the geology, geochemistry, zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area, eastern margin of the Central Asian Orogenic Belt(CAOB). The seamount remnants are composed of carbonate 'cap' sediments, large volumes of pillow and massive basalts, carbonate breccia slope facies and radiolarian cherts. Group 1 basalts are characterized by high contents of P2 O5 and TiO2 with alkaline affinity and LREE enrichment, indicating that they are derived from intraplate magma. Group 2 basalts display N-MORB LREE depletion patterns, indicating that they were formed at a mid-ocean ridge. Group 3 basalts have shown distinct Nb depletion and high Th/Yb ratios, indicating that they were generated in an island arc tectonic setting. The zircon U-Pb age of Group 1 basalt sample XWT18-131 is 576.4 ± 9.4 Ma, suggesting that the oceanic island seamount was the product of intraplate magmatism related to a mantle plume or 'hot spot' in the late Neoproterozoic. The zircon U-Pb age of Group 2 basalt sample XWT18-132 is 483 ± 22 Ma, indicating that the Paleo-Asian Ocean(PAO) was continuously expanding in the Early Ordovician. The zircon U-Pb age of Group 3 basalt sample XWT18-101 is 240.5 ± 8.2 Ma, suggesting that this area underwent the evolutionary path of ocean-continent transition, developing towards continentalization during the Middle Triassic. Thus, we believe that there was both mantle plume-related intraplate magmatism and intraoceanic subduction during the evolution of the PAO, the CAOB possibly being an evolutionary model of an intraoceanic subduction and mantle plume magmatism complex.  相似文献   
63.
辽东石庙沟地区位于华北陆块东部的辽吉造山/活动带上,该带经历了十分复杂的构造演化过程,记录了多期岩浆-构造-变质事件。石庙沟岩体为花岗斑岩,富SiO2、Na2O和K2O,贫CaO、MgO及Al2O3,亏损高场强元素(Nb、Ti、Ta、P),富集大离子亲石元素(K、Rb、Ba、U),A/CNK值大于1,REE配分曲线呈"海鸥"式分布,以具有显著的负Eu异常为特征,高Ga/Al值,与典型A型花岗岩特征一致。花岗斑岩中锆石的LA-ICP-MS U-Pb测年结果表明其成岩年龄为(123.0±1.6)Ma,为早白垩世。锆石Hf同位素分析表明,εHft)值均为负值,介于-15.72~-12.85之间,平均值为-14.14,二阶段模式年龄(TDM2)在2 164~1 989 Ma之间,平均为2 067 Ma,反映源岩以大陆壳成分为主。结合花岗斑岩高SiO2,低Mg、Co、Cr、Ni,且富集LREE和LILE,亏损HFSE等特征,表明早白垩世花岗斑岩岩浆应为大陆地壳物质熔融的产物。根据年代学和岩石地球化学研究认为,早白垩世花岗斑岩是古太平洋板块向欧亚大陆板块俯冲所形成的活动大陆边缘弧花岗岩。研究区早白垩世花岗斑岩的形成主要受太平洋构造域的影响,形成环境受板块俯冲造山后伸展作用和下地壳拆沉作用的联合制约,是辽东地区岩石圈减薄的直接证据。  相似文献   
64.
为厘清四川盆地开江地区WT1井震旦系陡山沱组地层发育的构造背景,重塑其原型沉积盆地,为重建古地理及油气进一步勘探部署工作提供科学依据,利用岩石学、岩石地球化学及碎屑锆石U-Pb年代学手段对该井陡山沱组物源进行了分析。岩石地化结果表明WT1井陡山沱组沉积物源岩为中基性火山岩类且经历了中等程度化学风化作用;碎屑锆石U-Pb年龄主要记录了915~850Ma、794~714.5Ma以及622~700Ma 3个阶段的构造岩浆活动,与扬子克拉通北缘及邻区Rodinia超大陆的裂解演化过程有关,该构造活动背景下的中基性火山岩是WT1井陡山沱组沉积的主要物质来源。结果表明四川盆地开江地区的陡山沱组发育于拉张伸展构造背景,属克拉通内裂陷盆地沉积,有利于烃源岩层的发育;同时为Rodinia超大陆的裂解演化过程提供了重要的年代学演化证据。该成果对深入认识四川盆地的地质结构、沉积-构造演化以及油气勘探的战略部署等具有极为重要的科学意义。  相似文献   
65.
金岭岩体是鲁西地区代表性的中生代侵入杂岩体,与金岭矽卡岩型铁矿的成因密切相关。为了解石英闪长岩的成因及与矽卡岩铁矿成矿关系,本次研究对金岭杂岩体中的石英闪长岩进行了年代学、地球化学及锆石Lu—Hf同位素和角闪石矿物微区成分的系统研究。LA-ICP-MS锆石U-Pb年代学显示石英闪长岩加权平均年龄为(128±1) Ma,侵位时代为早白垩世;样品具有较低的w(SiO_2)(58.34%~65.22%),和高的w(Al_2O_3)(14.95%~15.72%),w(Na_2O)为4.44%~5.16%,w(K_2O)为2.26%~5.17%,w(CaO)为3.39%~6.30%,w(Fe_2O_3~T),w(MgO)含量变化范围较大,分别为2.21%~6.86%和2.32%~5.21%,此外,样品具有较高的Sr含量(682~834×10-6)、Ba含量(1 130~1 595×10-6),表现出高Ba, Sr花岗岩的岩石地球化学特征。石英闪长岩中角闪石为岩浆成因角闪石,具有壳源岩浆成因角闪石的特征,其结晶时的氧逸度为△NNO+0.83~△NNO+1.87,温压条件为849~1 092℃和89~279 MPa。石英闪长岩含有较高的Ni含量、Co含量、Cr含量以及Mg~#,其Nb/Ta, Zr/Hf, Rb/Sr和Ba/Rb比值接近原始地幔平均值。样品含有~2.5Ga的捕获锆石,所有锆石的εHf(t)值为负值。锆石Hf同位素和岩石地球化学特征表明石英闪长岩侵位深度为3.9~10.3 km,岩浆源区为岩石圈地幔并受到地壳物质的混染。  相似文献   
66.
前寒武纪微陆块是北山—阿拉善北部增生造山带的重要组分,旱山、雅干和珠斯楞—杭乌拉地区的前寒武纪基底是否存在学界尚存争议.居延海介于北山造山带北部和阿拉善地块北缘的构造衔接部位,受限于巴丹吉林沙漠覆盖,岩石露头极少,我们通过钻井工程,钻遇一套晚石炭世碱性花岗岩,锆石U-Pb年龄和Hf同位素特征揭示,该花岗质岩浆锆石结晶年龄为(312±1)Ma(MSDW=0.46,n=18)和(315±2)Ma(MSWD=0.93,n=15),具有正的εHf(t)值,介于+0.8~+4.4之间,平均值为+2.2,对应二阶段模式年龄TDM2为1048~1267 Ma,平均值为1183 Ma,具有古老地壳的源区属性.通过与旱山构造带、雀儿山构造带、雅干构造带和珠斯楞—杭乌拉构造带的晚石炭世花岗质岩浆对比分析,结合旱山构造带、雅干构造带和珠斯楞—杭乌拉构造带0.9 Ga花岗质岩石的出露以及区域上的重磁资料解译,我们认为旱山、雅干和珠斯楞—杭乌拉构造带存在中—新元古代地壳,且可开展进一步的衔接关系研究.  相似文献   
67.
江浪穹窿位于扬子陆块西缘,本文作者在穹窿南部新发现一套侵入于二叠系及志留系的超基性岩,岩石主要由蛇纹石(约60%)、橄榄石(约30%)和少量磁铁矿(约5%)、角闪石(约5%)组成。为探讨超基性岩的成因,本文进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学及Sr-Nd同位素研究。定年结果表明,超基性岩中发育大量2427~430 Ma的捕获锆石,最年轻一组岩浆锆石206Pb/238U加权平均年龄为222.3±4.4 Ma(MSWD=1.9,n=6)。主微量元素分析显示岩石:(1)具有低的SiO2含量(46.76%~39.07%)、高的Mg#值(82.3~74.0)与Cr、Co、Ni丰度;(2)稀土元素含量(ΣREE平均31.8 μg/g)与(La/Yb)N值(5.26~1.38)偏低,稀土配分型式较为平坦,具有较弱的Ce负异常(Ce/Ce*=0.80~0.67);(3)富集大离子亲石元素Rb、Ba和U,亏损高场强元素Zr和Hf;(4)(Th/Yb)PM值(29.8~1.56)、(Th/Ta)PM值(0.22~0.03)、(La/Nb)PM值(1.91~0.39)及La/Sm值(5.88~1.11)较低。Sr-Nd同位素分析显示,超基性岩具有较低的(87Sr/86Sr)i值(0.706872~0.702598)和高的εNd(t)值(8.02~5.64),成分接近于亏损地幔和岛弧玄武岩,计算表明地壳物质的混染程度低于5%。结合前人研究成果,本文认为超基性岩结晶年龄为222.3 Ma,可能形成于古特提斯洋闭合阶段的岛弧背景;原始岩浆来自高度部分熔融的地幔源区,上升侵位过程中可能经历了铬铁矿与橄榄石的分离结晶作用。此外,捕获锆石的年龄谱反映江浪穹窿很可能存在太古宙—古元古代变质基底,并且具有Rodinia超大陆会聚—裂解以及泛非事件的地质年龄记录。  相似文献   
68.
博格达造山带大量分布基性岩,其成因研究对区域构造演化具有重要意义。本次对博格达造山带中段木垒地区的基性岩进行了系列研究工作,初步对岩石成因和构造环境进行了探讨,为博格达造山带研究提供了新的依据。岩石地球化学特征显示,辉绿岩的SiO2含量为47.71%~53.7%,K2O含量为0.61%~1.87%,Na2O含量为2.97%~5.14%,显示富钠贫钾特征,属准铝质中-高钾钙碱性岩石系列。Mg#值为29.80~47.89,远低于原始玄武质岩浆的参考数值65,表明区内基性岩可能是原始岩浆经历较强程度分异作用后的产物;分异指数(DI)均大于35.00,固结指数均远小于30,均显示辉绿岩分异程度较高。稀土元素特征显示较高稀土总量、轻稀土强烈富集的右倾模式,相对富集Rb、Ba、K、Th等大离子亲石元素,相对亏损Nb、Ti、Hf、Zr等高场强元素。辉绿岩锆石U-Pb年龄为(305.9±3.1)Ma;辉绿岩岩浆可能源于亏损尖晶石橄榄岩相至原始尖晶石橄榄岩相之间,为较低程度部分熔融及分异演化综合作用形成的产物,为晚石炭世博格达弧后裂陷盆地晚期局限性伸展作用的产物。  相似文献   
69.
We present new U-Pb zircon and monazite ages from the Sunsas belt granitic magmatism in Bolivia,SW Amazonian Craton.The geochronological results revealed four major magmatic events recorded along the Sunsas belt domains.The older igneous event formed a granitic basement coeval to the Rio Apa Terrane(1.95-1.85 Ga)in the southern domain.The second magmatic episode is represented by 1.68 Ga granites associated to the Paraguá Terrane(1.69-1.66 Ga)in the northern domain.The 1.37-1.34 Ga granites related to San Ignacio orogeny represent the third and more pervasive magmatic event,recorded throughout the Sunsas belt.Moreover,magmatic ages of~1.42 Ga revealed that the granitogenesis asso-ciated to the Santa Helena orogeny also affected the Sunsas belt,indicating that it was not restricted to the Jauru Terrane.Lastly,the 1.10-1.04 Ga youngest magmatism was developed during the Sunsas oro-geny and represents the final magmatic evolution related to Rodinia assembly.Likewise,the 1.95-1.85 and 1.68 Ga inherited zircon cores obtained in the~1.3 Ga and 1.0 Ga granite samples suggest strong par-tial melting of the Paleoproterozoic sources.The 1079±14 Ma and 1018±6 Ma monazite crystallization ages can be correlated to the collisional tectono-thermal event of the Sunsas orogeny,associated to reac-tions of medium-to high-grade metamorphism.Thus,the Sunsas belt was built by heterogeneous 1.95-1.85 Ga and 1.68 Ga crustal fragments that were reworked at 1.37-1.34 Ga and 1.10-1.04 Ga related to orogenic collages.Furthermore,the 1.01 Ga monazite age suggests that granites previously dated by zir-con can bear evidence of a younger thermal history.Therefore,the geochronological evolution of the Sunsas belt may have been more complex than previously thought.  相似文献   
70.
《China Geology》2021,4(1):77-94
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau. This region was considered to be in the southeastward extension of the Lhasa Block, bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south. The Demala Group complex, a set of high-grade metamorphic gneisses widely distributed in the Chayu area, is known as the Precambrian metamorphic basement of the Lhasa Block in the area. According to field-based investigations and microstructure analysis, the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses, biotite quartzofeldspathic gneiss, granitic gneiss, amphibolite, mica schist, and quartz schist, with many leucogranite veins. The zircon U-Pb ages of two granitic gneiss samples are 205 ± 1 Ma and 218 ± 1 Ma, respectively, representing the ages of their protoliths. The zircons from two biotite plagiogneisses samples show core-rim structures. The U-Pb ages of the cores are mainly 644 –446 Ma, 1213 –865 Ma, and 1780 –1400 Ma, reflecting the age characteristics of clastic zircons during sedimentation of the original rocks. The U-Pb ages of the rims are from 203 ± 2 Ma to 190 ± 1 Ma, which represent the age of metamorphism. The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma, interpreted as the age of the anatexis in the Demala Group complex. Biotite and muscovite separates were selected from the granitic gneiss, banded gneiss, and leucogranite veins for 40Ar/39Ar dating. The plateau ages of three muscovite samples are 16.56 ± 0.21 Ma, 16.90 ± 0.21 Ma, and 23.40 ± 0.31 Ma, and the plateau ages of four biotite samples are 16.70 ± 0.24 Ma, 16.14 ± 0.19 Ma, 15.88 ± 0.20 Ma, and 14.39 ± 0.20 Ma. The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex. Combined with the previous research results of the Demala Group complex, the authors refer that the Demala Group complex should be a set of metamorphic complex. The complex includes not only Precambrian basement metamorphic rock series, but also Paleozoic sedimentary rock and Mesozoic granitic rock. Based on the deformation characteristics, the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic, namely Late Triassic-Early Jurassic (203 –190 Ma) and Oligocene –Miocene (24 –14 Ma). The early stage of metamorphism (ranging from 203 –190 Ma) was related to the Late Triassic tectono-magmatism in the area. The anatexis and uplifting-exhumation of the later stage (24 –14 Ma) were related to the shearing of the Jiali strike-slip fault zone. The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.©2021 China Geology Editorial Office.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号